

Mark scheme

Question		Answer/Indicative content	Marks	Guidance
1	i	<p>double peaks / they , are heterozygous / have different alleles ✓</p> <p>single peaks , are homozygous / have the same allele ✓</p>	2 (AO 2.2)	<p>IGNORE genes / coding</p> <p>ALLOW VNTR length as AW for allele</p> <p><i>If no other mark awarded</i></p> <p>ALLOW 1 mark for using the terms 'homozygous' and 'heterozygous' (not linked to peaks)</p> <p>Examiner's Comments</p> <p>This was a challenging question in which only around 1 in 10 responses scored any marks. Candidates were required to understand the context provided and use key terms correctly to express their ideas. Some responses had the right idea, but they confused key terms such as gene with allele, homologous with homozygous (and their hetero-equivalents), and polygenic with polymorphic. Autosomal linkage was often seen as an incorrect answer.</p>
	ii	<p><i>claim is supported because...</i></p> <p>1 (DNA profiles) are identical / match / AW ✓</p> <p>probability / chance , of 2 people having identical profiles is <u>very</u> low / AW ✓</p> <p>2</p> <p>however...</p> <p>3 (6 is) a low number of , loci / peaks ✓</p> <p>4 ... so they could have been , <u>closely</u> related / AW ✓</p> <p>5 could be identical twins ✓</p>	3 max	<p><i>Assume correct context unless answer contradicts it</i></p> <p>1 ALLOW are the same</p> <p>1 IGNORE similar / same number of base pairs</p> <p>2 ALLOW <u>very</u> low <u>likelihood</u> / near impossibility , that 2 people would have matching profiles</p> <p>2 IGNORE so they probably come from the same person</p> <p>3 ALLOW only 6 genes were tested</p> <p>3 ALLOW 17 loci are needed in court</p> <p>3 IGNORE small sample</p> <p>4 ALLOW only if mp 3 has been AWARDED</p> <p>Examiner's Comments</p>

			OCR support The maths skills handbook and the guidance on statistics for biologists offer further support on the use of statistical tests. Additional support on all the maths skills can be found on 'Maths for Biology' resources on ' Teach Cambridge '.
	ii	differences (between observed and expected) are significant ✓ (less than) 5% chance that (difference is) due to chance ✓ reject , null hypothesis / H_0 ✓ there is an association between tree species and wood sorrel population / AW ✓	ALLOW ora if candidate answer in (i) is below 5.991 ALLOW (>) 95% confident that (the difference is) not due to chance ALLOW tree species affects wood sorrel ALLOW wood sorrel less likely to grow near sycamore ora Examiner's Comments This question differentiated well, and all marking points were regularly seen. Candidates seemed better at discussing statistical significance correctly than in previous years. There were, for example, fewer responses that ascribed significance to 'results' or 'data', rather than to a 'difference'. Candidates who had miscalculated the chi-squared value in part (i) were able to access all of the available marks.
	iii	age / size / height , of tree ✓ gradient (of ground) ✓ density / AW , of surrounding trees ✓ <i>idea of direction of sunlight</i> ✓	ALLOW shading from adjacent trees IGNORE light intensity unqualified ALLOW e.g., whether they are all on the same side of a hill IGNORE presence of other species IGNORE all other variables Examiner's Comments Unusually for a 'identify some control variables' question, the usual answers common to a range of laboratory-based investigations did not apply to this environmental

				context. Hence only a minority of candidates scored at all, and it was very rare to award both marks. Most commonly candidates gained a mark for suggesting that size (age, height or girth) of trees should be controlled as far as possible. References to density of surrounding trees and slope were seen but much less frequently. Although ensuring that the mineral or water content of the soil were controlled might well have been beneficial, such levels of control in a field study context are impractical. Time of day was a regular incorrect response but taking readings at different times of day would not realistically affect the number of small herbaceous plants growing under a tree.
				Assessment for learning <p>Although time and resource constraints can make field trips difficult, experience of conducting a study such as this one in a site larger than school grounds is a useful way to learn about the issues involved in carrying out a scientific investigation in an environmental context.</p>
		Total	8	
3		C✓	1 (AO 1.1)	<p>Examiner's Comments</p> <p>Around half of candidates knew that discontinuous variation could not be under the control of many genes on different chromosomes.</p>
		Total	1	
4		<p>FIRST CHECK ON ANSWER LINE If answer = 1024 award 2 marks</p> <p>number of combinations = 2^n ✓ $2^{10} = 1024$ ✓</p>	2 (AO2.2)	<p>If answer is incorrect</p> <p>ALLOW 1 mark for 512 or 2048 or 1000</p> <p>Examiner's Comments</p>

				Most candidates found this question very challenging, either because they did not know, or could not work out that the number of gamete combinations would be 2^n . Less than 1 in 5 candidates got this right but, of those that did, almost all achieved both marks. The most common incorrect response was '40'.
		Total	2	
5	a	sequence genomes (of different varieties) ✓ <i>(use bioinformatics and computational biology to) develop / use, (appropriate) software</i> ✓ use , algorithms / statistical tests / (mathematical) models ✓ store , data / information (from different DNA sequences) ✓ analyse / identify, differences / similarities, in DNA (sequences) / alleles ✓	3 max (AO1.2) (AO2.5) (AO2.7)	ALLOW 'develop theoretical models' ALLOW 'use a database' / 'storing genomes (on a database)' ALLOW 'comparison of, differences / similarities, in their genes' Examiner's Comments This question was proven challenging for the candidates. Only a few candidates were confident with these processes and knew what a genome is. These candidates mentioned storing information on databases or using software or models to compare and identify similarities or differences between the DNA sequences of different varieties of maize. Lots of candidates included irrelevant descriptions of lab methods such as PCR, Southern Blotting, or referenced sequencing amino acids, rather than sequencing genomes. Some candidates went into detail about how sequencing is carried out, or just repeated the stem of the question and talked about 'comparing genomes'.
	b	(parental genotypes) AaBb and aaBb ✓	4 (AO2.6) (AO2.5)	If incorrect symbols used throughout = max 3 ALLOW ECF for mp2-4 if incorrect genotypes used

	<p>(gametes) AB Ab aB ab and aB ab ✓</p> <p>purple & smooth : purple & wrinkled : yellow & smooth : yellow & wrinkled ✓</p> <p>(ratio =) 3:1:3:1 ✓</p>		<p>ALLOW mp2 if gamete line is incomplete (e.g. only one parental genotype given - AB, Ab, aB, ab) but Punnett square is correct for both sets of gametes</p> <p>If AA /aa / BB / bb / Aa / Bb given as gametes no further mp's awarded as incorrect biology</p> <table border="1" data-bbox="954 467 1414 871"> <thead> <tr> <th></th><th>AB</th><th>Ab</th><th>aB</th><th>ab</th></tr> </thead> <tbody> <tr> <td>aB</td><td>AaBB purple & smooth</td><td>AaBb purple & smooth</td><td>aaBB yellow & smooth</td><td>aaBb yellow & smooth</td></tr> <tr> <td>ab</td><td>AaBb purple & smooth</td><td>Aabb purple & wrinkled</td><td>aaBb yellow & smooth</td><td>aabb yellow & wrinkled</td></tr> </tbody> </table> <p>ALLOW mp2 and mp3 from a Punnett square</p> <p>all four phenotypes should be listed (in any order)</p> <p>ALLOW ratio of 6:2:6:2</p> <p>ALLOW phenotypes and ratio in a different order for mp3 and mp4, providing they correctly correspond.</p> <p><u>Examiner's Comments</u></p> <p>Relatively few candidates were able to work through this cross to deduce the correct offspring phenotypic ratio. Many candidates were prepared for a standard dihybrid cross with heterozygous parents, giving a 9:3:3:1 ratio. Most candidates were able to give the parental genotypes but couldn't identify how the gametes were derived from the genotype. A few candidates did not know what a phenotype is, and several candidates who did work through this cross correctly lost a mark for not matching up the correct</p>		AB	Ab	aB	ab	aB	AaBB purple & smooth	AaBb purple & smooth	aaBB yellow & smooth	aaBb yellow & smooth	ab	AaBb purple & smooth	Aabb purple & wrinkled	aaBb yellow & smooth	aabb yellow & wrinkled
	AB	Ab	aB	ab														
aB	AaBB purple & smooth	AaBb purple & smooth	aaBB yellow & smooth	aaBb yellow & smooth														
ab	AaBb purple & smooth	Aabb purple & wrinkled	aaBb yellow & smooth	aabb yellow & wrinkled														

				phenotype with the phenotypic ratio.
				Assessment for learning Candidates could be given a range of possible parental genotype combinations to work through hybrid cross, not just the standard dihybrid cross with two heterozygous parents. Placing gametes in circles might help candidates understand how the gametes are derived from the genotype.
		Total	7	
6		C ✓	1 (AO1.2)	Very few candidates selected the correct answer for this question, option C . A range of incorrect responses were seen, highlighting a misconception on how mutations are caused.
				Misconception Mutations cannot be caused by selective breeding. Mutations occur randomly either due to random errors during DNA replication, exposure to mutagens or a viral infection.
		Total	1	
7		B ✓	1 (AO1.2)	Examiner's Comments Candidates found this question challenging, with only around a quarter selecting the correct response, B . Option D and, to a lesser extent, option A were common incorrect responses. Option A would increase the occurrence of genetic disorders. Option D is also incorrect because the wild ancestor of dogs (and wolves) no longer exists.
		Total	1	

			<u>Examiner's Comments</u>	
8		A ✓	1 (AO2.7)	About half of candidates selected the correct response, A . The most common incorrect responses were B and C .
		Total	1	
9		FIRST CHECK ON ANSWER LINE If answer = 150 award 2 marks $150/600 = 0.25 (q^2)$ square root of 0.25 = 0.5 (q) ✓ $p = 1 - 0.5 = 0.5$ $p^2 = 0.5^2 = 0.25$ $0.25 \times 600 (= 150) \checkmark$	2(AO2.2)	ALLOW 0.25 for 1 mark ALLOW 1 mark for any 2 correct steps of process Step 1 $150/600 = 0.25 (q^2)$ ALLOW ECF for steps 2 –5 2. Find square root of $q^2 (q)$ 3. Subtract figure(q) from 1 (p) 4. Multiply $p \times p$ (p^2) 5. $(p^2) \times 600$
		Total	2	<u>Examiner's Comments</u> Candidates who were able to calculate the allele frequency correctly ($q^2=150/600=0.25$) often later reached the correct answer of 150 for 2 marks, or gained a mark for their calculations, even if they didn't reach the correct answer. The most common error was to assume $150/600$ was q rather than q^2 .
10		environmental ✓ stimuli ✓ apoptosis ✓ enzymes ✓ phagocytes / phagocytosis ✓	5(AO1.2)	ALLOW stress / factors ALLOW proteases / caspases IGNORE lysosomes ALLOW macrophages / endocytosis
				<u>Examiner's Comments</u> The majority of responses for the first three blank spaces were correct. Few responses were able to gain full marks. For each blank, the most common incorrect responses were 'hormonal' and 'conditions'. Nearly all candidates got this right, although spellings that were not phonetically similar were not given marks. Examples of these are: phagocytes, lysosomes and

				lysozyme, exocytosis, enzymes and vesicles.
		Total	5	
11	i	<p>horizontal axis labelled 'body length <u>mm</u>' 1 AND vertical axis labelled , 'frequency' / 'frequency density' (/100 mm) ✓ linear scale on both axes AND 2 at least 50% of grid covered by plotted area ✓ 3 histogram plotted with ruled lines and touching bars ✓ 4 first 5 bars plotted accurately \pm 0.5 squares and equal width ✓ 5 6th bar twice the width and height 23 ✓</p>	5(AO3.3)	<p><i>Points 1 and 2 can be awarded for a line graph.</i></p> <p>1 ALLOW unit written as ' / mm'</p> <p>1 Unit for frequency density can be omitted.</p> <p>4 Correct numbers: 10, 48, 121, 130, 119 (or 0.10, 0.48, 1.21, 1.30, 1.19 if frequency density used)</p> <p>5 Height 0.23 if axis labelled 'frequency density'</p> <p>Examiner's Comments</p> <p>The full range of marks was seen for this question in which candidates had to draw a histogram to represent the data they had been given. The vast majority achieved the first marking point with very few reversing the axes, neglecting to label the axes or omitting units for body length. The second marking point was given to most of the answers seen but often candidates used a categoric scale on the x-axis or, occasionally, used a y-axis scale that did not fill enough of the available space. Some candidates did not achieve the third marking point because they had drawn a bar chart (where the bars didn't touch) rather than a histogram but almost all knew to use a ruler. Of the candidates who drew bars, most drew them the correct height; however, a few, usually those who had chosen an unusual y-axis scale (e.g., going up in 15s), did not manage to find 121 or 119. Very few got the final marking point, suggesting not much practice of histograms in lessons. It was noted that those few candidates who achieved all 5 marks tended to plot</p>

				frequency density.
				<p>OCR support</p> <p> Presentation of practical results is regularly assessed in examinations. Help in development of these skills can be found in the OCR Biology Practical Skills Handbook: Biology Practical Skills Handbook (ocr.org.uk)</p>
	ii	bell-shaped / normal distribution ✓ (data / variation) continuous ✓	2(AO2.2)(AO3.2)	<p>ALLOW most frequent values in middle of range ALLOW e.g., most common length is between 400 and 500</p> <p>Examiner's Comments</p> <p>Around half of responses achieved a mark here for stating either that the variation was continuous or describing the shape of the curve, but very few candidates did both and hence both marks were rarely given. The first marking point was often given for a description of a bell-shaped curve; however, some potentially creditworthy descriptions ended up as attempts to support hypotheses about selection pressures and so were not given marks.</p> <p>Misconception</p> <p> A number of responses stated that the graph did not show a normal distribution but the shape of the graph in this question is about as close to a normal distribution as is likely to be achieved with real data of this type.</p>
		Total	7	